Call #: HM251 .B65

Location: Branson
Periodicals Area

Item #:

Journal Title: British Journal of Social Psychology

Volume: 44
Issue: 1
Month/Year: 2005
Pages: 3-13

Article Author: Brown, J., Trafimow, D, & Gregory, W. L.

Article Title: The generality of negative hierarchically restrictive behaviors.

Imprint:

Trans Date: 10/26/2005 08:52:07 AM
The generality of negative hierarchically restrictive behaviours

Jennie Brown*, David Trafimow and W. Larry Gregory
New Mexico State University, USA

Previous research has shown that when an actor engages in a negative hierarchically restrictive behaviour, a strong correspondent trait attribution is made and this behaviour is expected to generalize across situations (Trafimow, 2001). This paper discusses three experiments that examined the effects of extreme situations and perceived morality of the actor on the way in which participants make trait attributions, and the extent to which those behaviours are expected to generalize to other situations. Findings from Experiments 1 and 2 indicate that even negative hierarchically restrictive behaviours do not always lead to strong correspondent inferences if the situation in which the initial behaviour was performed was sufficiently extreme. Experiment 3 served to support these findings and cleared up questions from the first two experiments. Findings supported the hypothesis that some situations inhibit negative trait attributions and behaviour generalizations. Furthermore, findings indicate that the perception of the morality of the actor determines whether or not a negative hierarchically restrictive behaviour will lead to a negative trait attribution and generalization.

Reeder and Brewer (1979) suggested a distinction between two important trait dimensions that has been useful in understanding how we categorize moral behaviours and make trait attributions. These are partially restrictive trait dimensions and hierarchically restrictive trait dimensions. First, we will discuss partially restrictive trait dimensions. One characteristic of partially restrictive trait dimensions is that they allow for a wide range of behaviours. For example, an individual who is thought to be kind is expected to engage in mostly kind behaviours and some unkind behaviours. On the other hand, an individual who is thought to be unkind is expected to engage in mostly unkind behaviours and some kind behaviours. In sum, regardless of which pole of a trait dimension a person is thought to occupy, they can engage in corresponding and non-corresponding behaviours. Occasional inconsistent behaviour is not sufficient to change the perception of an actor’s kindness.

*Correspondence should be addressed to Dr Jennie Brown, Department of Psychology, 3452, New Mexico State University, PO Box 30001, Las Cruces, NM 88003-8001, USA (e-mail: jenbrown@nmsu.edu).

DOI: 10.1348/014466604X214455
Hierarchically restrictive trait dimensions differ from partially restrictive trait dimensions in two ways. First, if a person is thought to occupy the positive pole of a hierarchically restrictive dimension, s/he is expected to engage in only positive behaviours. However, if a person is thought to occupy the negative pole of the dimension, then s/he is expected to engage in both positive and negative behaviours. For example, if Joe is thought to be dishonest, he is expected to engage in both honest and dishonest behaviours. On the other hand, if Jane is thought to be honest, she is expected to engage only in honest behaviours. One negative hierarchically restrictive behaviour is sufficient to change the perception of an actor’s trait possession. If Jane is thought to be honest, a single dishonest behaviour can change an observer’s perception of her (Jane is now thought to be dishonest). This leads us to the second way in which hierarchically restrictive trait dimensions differ from partially restrictive trait dimensions. Where morality is concerned, behaviours that correspond to negative hierarchically restrictive traits lead to much stronger trait attributions than behaviours that correspond to either positive hierarchically restrictive traits or to positive or negative partially restrictive traits. For example, if a person commits a dishonest act, the observer feels that this is sufficient information to infer that the person is dishonest. However, if a person performs an honest, kind, or unkind behaviour, then this does not lead to a strong attribution.

Fundamental attribution error

Heider (1958) theorized that observers have a tendency to underestimate or completely disregard the impact of the situation or context and overestimate the impact of the actor’s disposition in attributing behaviour. This tendency was later labelled the fundamental attribution error (Ross, 1977). Previous research has indicated that it is much easier for an observer to attribute an actor’s behaviour to the possession of a specific trait rather than attempt to calculate how situational factors affected the behaviour (Jones & Harris, 1967; Ross, 1977). Several experimenters have since demonstrated that there are times when situations are considered, and times when they are not (Krull, 1993; Quattrone, 1982; Shoda, Mischel, & Wright, 1989; Trafimow 1998; Trafimow & Schneider, 1994; Trafimow & Trafimow, 1999; Wright & Mischel, 1987, 1988). Thus, there are at least two interpretations of the fundamental attribution error. A strong interpretation would mean that observers always make a trait attribution. A weaker interpretation would mean that there are times when the fundamental attribution error holds true, and times when it does not.

An example of research that supports the weaker interpretation is person memory research. In person memory experiments, participants are informed that an actor possesses a specific trait. Then the participants are told that this actor engaged in several congruent and incongruent behaviours. The participants are later asked to recall the actor’s behaviours. Participants tend to recall incongruent behaviours better than congruent behaviours (see Stangor & McMillan, 1992 for meta-analyses). Trafimow (1998) used this paradigm to test the fundamental attribution error. He led participants to believe that an actor was either kind or unkind at work or at home. The participants then read about the actor performing congruent and incongruent behaviours in the same and different situations (at home or work). A strong interpretation of the fundamental attribution error implies that people do not pay attention to the situation and so there should be an incongruity effect regardless of the situation in which the behaviours originally occurred. Contrary to this hypothesis, Trafimow obtained an
incongruity effect only for behaviours in the same situation in which the expectancy was developed (for example, if the expectancy was developed at home, then there was no incongruity effect for behaviours that occurred at work). It is worth noting that Trafimow only used partially restrictive behaviours (kind and unkind). Thus, it is unclear whether or not this would be the case with hierarchically restrictive behaviours.

Trafimow (2001) addressed this issue in an experiment. Participants were informed that an actor exhibited a specific trait in one situation, and were then asked to predict the trait that the actor would exhibit in a different situation. He found that the relationship between behaviours and subsequent trait expectancies differs depending on the trait dimension of concern. More specifically, negative hierarchically restrictive behaviours (e.g. dishonest behaviours) are expected to generalize across different situations, but negative partially restrictive behaviours are not (e.g. unfriendly behaviours).

Although the Trafimow (2001) finding is quite compelling, it remains possible that there are some situations in which even negative hierarchically restrictive behaviours will not generalize. It may be the case that if the situation in which the behaviour was performed is unique in some way, then participants would not expect the actor to behave in the same fashion in a different situation. Suppose that an actor engaged in a dishonest (or disloyal) behaviour in order to gain a million dollars. If it is expected that most people would engage in a dishonest behaviour to gain a million dollars, then it may be that most people would not expect dishonesty in another situation.

Let us also consider another example. Suppose that an actor engaged in a dishonest (or disloyal) behaviour in order to save a life. In this case, it would be arguable whether an observer would make the trait attribution that the actor is dishonest. It is possible that if a situation is very extreme or in which the actor behaves morally, then the behaviour will not be thought to generalize to subsequent situations, or lead to a strong trait attribution. Thus, the main purpose of this study is to determine if there are situations in which even negative hierarchically restrictive behaviours will not lead to corresponding trait expectations in other situations. We see at least four possibilities. The first possibility is that, consistent with Trafimow (2001) negative hierarchically restrictive behaviours will lead to strong trait attributions and generalizations even in extreme situations. The second possibility is that extremity is relevant but only in ridiculously extreme cases (e.g. saving a life), leading to strong attributions and generalizations for behaviours in very extreme situations and weaker attributions and generalizations in less extreme situations. A third possibility is that even less extreme situations (e.g. gaining a great deal of money) will be sufficient to inhibit the expectation that a behaviour will generalize. The final possibility is that perceiving the actor as moral may prevent observers from making corresponding trait attributions and generalizations (Experiment 3).

EXPERIMENTS 1 AND 2

The participants learned that the actor engaged in a dishonest behaviour in Experiment 1 and a disloyal behaviour in Experiment 2 for one of five different reasons; to save a life (own or others'), to gain or avoid losing financially, or for no reason (for fun). The second experiment served as a replication of the first, but the negative hierarchically restrictive behaviour was disloyal instead of dishonest. The purpose of the different conditions was to compare the effects of different situations to discover if/how they changed participants' perceptions of the behaviour, thereby resulting in less negative
generalizations and trait attributions. It may be that in extreme situations or situations in which the actor behaves in a moral manner, participants will not expect negative hierarchically restrictive behaviours performed in one situation to be performed in another situation.

Method
Participants
For this study, 105 male and female students from New Mexico State University participated to partially fulfill a course requirement. There were 52 participants in Experiment 1 and 53 in Experiment 2. Each participant was administered a questionnaire which contained a scenario and six dependent measures.

Materials and procedure
In Experiment 1, participants were given one of five possible questionnaires. Each involved an actor named Joe who engaged in a dishonest behaviour in one of five different situations (for fun, to gain a million dollars, to avoid losing a million dollars, to save his life or to save someone else’s life). For example, one scenario read, ‘Joe was dishonest to a friend to gain a million dollars.’ The manipulation was the situational information presented to the participant. The condition in which Joe engaged in a behaviour for fun served as a baseline for comparison with the four other experimental conditions. Experiment 2 was run in the same manner except that another negative hierarchically restrictive behaviour, disloyal, was used as the behaviour (see Table 1 for conditions).

After reading the information about Joe, each participant was asked to rate Joe, his situation, and his behaviour. First, participants completed a generalization measure. The question read, ‘How dishonest (disloyal in Experiment 2) would Joe be to another friend?’ The participants indicated their answer on a scale that read, extremely honest (3), quite honest (2), somewhat honest (1), neutral (0), somewhat dishonest (−1), quite dishonest (−2), extremely dishonest (−3). Next, participants completed a trait attribution measure that read, ‘Please rate Joe’s behaviour on the following scale.’ The corresponding scale for this item was identical to the first. The third measure asked participants how Joe’s behaviour made them feel and read, ‘Joe’s behaviour makes me feel . . .’ The scale that corresponded to this item followed the same 7-point Likert-type scale as the previous scale but referred to good/bad instead of a trait. Next, there was an item that read, ‘Please rate Joe’s behaviour given the situation,’ and was followed by two scales that pertained to pleasant/unpleasant and enjoyable/not enjoyable. The final item read, ‘Please rate Joe on the following scale,’ and was followed by a scale that ranged from extremely moral to extremely immoral on another 7-point Likert-type scale.

Results
The results for Experiments 1 and 2 followed the same general trend and will thus be discussed in parallel. The difference between the two experiments was tested and there were no significant differences between them. Planned comparisons were used to test the differences between conditions. The mean ratings for generalization and trait attribution for each condition are presented in Table 1. Analyses of these items revealed
Table 1: Mean generalization (Gen.), trait attribution (Att.), Affect 1 (A1), Affect 2 (A2) and morality (Mor.), morality of behaviour (Mor. Beh.), situation extremity (Sit. Ext.), behaviour rating (Beh. Rat.) ratings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For fun</td>
<td>-1.11</td>
<td>-1.67</td>
<td>-1.50</td>
<td>-1.00</td>
<td>-1.33</td>
<td>-1.11</td>
<td>-1.44</td>
<td>-1.89</td>
<td>-1.00</td>
<td>-1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To gain a million dollars</td>
<td>-1.56</td>
<td>-2.00</td>
<td>-1.22</td>
<td>-1.44</td>
<td>-1.78</td>
<td>-1.57</td>
<td>-2.00</td>
<td>-1.28</td>
<td>-1.57</td>
<td>-1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To avoid losing a Million dollars</td>
<td>-0.60</td>
<td>-0.40</td>
<td>-0.10</td>
<td>-0.80</td>
<td>-0.60</td>
<td>-0.75</td>
<td>-0.63</td>
<td>-0.81</td>
<td>-0.38</td>
<td>-1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To save his life</td>
<td>1.18</td>
<td>0.64</td>
<td>0.77</td>
<td>1.00</td>
<td>0.81</td>
<td>-0.13</td>
<td>0.75</td>
<td>0.44</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To save someone Else's life</td>
<td>0.73</td>
<td>1.09</td>
<td>0.55</td>
<td>0.64</td>
<td>1.36</td>
<td>0.75</td>
<td>0.63</td>
<td>0.00</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
there was a significant difference between conditions. F values and significance levels for the planned comparisons are presented in Table 2. When the two finance conditions (gain a million dollars and avoid losing a million dollars) were compared, there was no significant difference. Further, there was no significant difference when these two conditions were combined and compared to the baseline (for fun) condition. When the two life-saving conditions (save his life and save someone else's life) were compared, there was no significant difference between them. When both of these items were combined and compared to the baseline condition, there was a significant difference. In sum, there was only a significant difference between the life-saving conditions and the baseline condition in both experiments. Thus, the life-saving conditions are the situations in which negative hierarchically restrictive behaviours do not lead to negative trait attributions, meaning that the behaviour is not expected to generalize to other situations.

The items measuring affect towards Joe's behaviour given the situation were combined (and will be referred to as Affect 1) because they were designed to measure the same concept (Cronbach's $\alpha = .79$). The mean ratings for Affect 1 and Affect 2 (affect towards Joe's behaviour) are shown in Table 1. For planned comparison, F values and significance levels, see Table 2. There was no significant difference between the two finance conditions, or between the finance conditions and the baseline condition. In addition, there was no significant difference between the two life-saving conditions. However, when the life-saving conditions were combined and compared to the baseline condition, there was a significant difference. Thus, both types of affect in both experiments differed significantly between the life-saving conditions and the baseline condition.

The mean morality ratings for each condition are presented in Table 1. Planned comparisons were used to test for differences between conditions (for planned comparison F values, see Table 2). When the finance conditions were compared, there was no significant difference, and there was no significant difference between these conditions and the baseline condition. There was no significant difference between the life-saving conditions, but when these conditions were combined and compared to the baseline condition, there was a significant difference. Here, we see the same trend. In sum, perceptions of Joe's morality differed significantly from the baseline when the behaviour occurred in the life-saving conditions.

EXPERIMENT 3

Experiments 1 and 2 were performed for the purpose of demonstrating the phenomena (thus supporting our hypothesis), however, there were some unanswered questions. One such question pertains to the participants' interpretations of the different situations, specifically the control condition. Recall that the control condition involved an actor engaging in a negative hierarchically restrictive behaviour 'for fun'. Our purpose in stating a reason for the negative behaviour was to give participants in each condition similar amounts of information, while not giving participants a good/justifiable reason for the actor's behaviour. However, it may be that this information caused a more negative reaction on the part of participants than if they had received no information. If this is so, then the 'for fun' condition was not an optimal control condition. With this in mind, we changed the control condition in Experiment 3 so that the participants read that the actor merely engaged in the behaviour and were given no other situational information. Because the only statistically significant differences
Table 2. Planned comparison F values for the multivariate and univariate contrasts

<table>
<thead>
<tr>
<th>Planned comparison and condition</th>
<th>Multivariate F experiments 1 & 2</th>
<th>Univariate F experiments 1 & 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gen & Att</td>
<td>Aff 1 & Aff 2</td>
</tr>
<tr>
<td>Finance vs. finance</td>
<td>1.95</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>1.52</td>
</tr>
<tr>
<td>Finance vs. fun</td>
<td>1.95</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>1.99</td>
<td>1.19</td>
</tr>
<tr>
<td>Life vs. life</td>
<td>1.22</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>1.42</td>
<td>0.43</td>
</tr>
<tr>
<td>Life vs. fun</td>
<td>15.78**</td>
<td>12.03**</td>
</tr>
<tr>
<td></td>
<td>6.19**</td>
<td>6.22**</td>
</tr>
</tbody>
</table>

Note. The degrees of freedom for all multivariate and univariate contrasts are 1 and 35 (up to 48). Gen = generalization, Att = trait attribution, Aff 1 = combined affect towards behaviour given the situation, Aff 2 = affect towards behaviour, Mor = morality. The top value corresponds to Experiment 1 (dishonest) and the lower value corresponds to Experiment 2 (disloyal).

**p < .005, *p < .05.
between conditions in Experiments 1 and 2 occurred between the control condition and the life-saving conditions, we did not include the financial conditions in the third experiment.

Another potential criticism of Experiments 1 and 2 could be that the scenarios did not reflect real life situations, therefore, participants' reactions may have been an artificial response to the stimuli. To eliminate this possible problem, we increased the information in each scenario (each was approximately 66 to 71 words in length) to make situations more realistic. Finally, another concern pertained to the wording in one of the life-saving conditions: 'Joe was dishonest to a friend in order to save his life', could be interpreted as either Joe saved his own life, or that Joe saved his friend's life. Because the wording for this condition is vague, it is unclear whether participants thought the pronoun 'his' referred to the actor or the actor's friend. This was amended in Experiment 3.

Method

Participants

For this experiment, 96 male and female students from New Mexico State University participated to partially fulfill a course requirement.

Materials and procedure

Participants were given one of three possible questionnaires. Each involved an actor (George) who engaged in a dishonest behavior in one of three different situations (we did not include disloyalty in this experiment as it did not differ significantly from dishonest in Experiments 1 and 2). The first situation was not specified (this served as the control condition). The other two situations served as the experimental conditions. These were similar to the life-saving conditions in the first two experiments with one exception. The condition that previously read, 'to save his life' was changed to 'to save his own life.'

After reading the scenario, the participants were asked to complete seven dependent measures. First, participants completed a generalization measure. The question read, 'How dishonest would George be to another friend?' The participants indicated their answer on a scale that read, extremely honest (3), quite honest (2), somewhat honest (1), neutral (0), somewhat dishonest (-1), quite dishonest (-2), extremely dishonest (-3). Next, participants completed a trait attribution measure that read, 'Please rate George on the following scale.' The corresponding scale for this item was identical to the first. The third measure asked participants how George's behavior made them feel and read, 'George's behavior makes me feel' The scale that corresponded to this item followed the same 7-point Likert-type scale as the previous scale, but referred to good/bad instead of a trait. The next item read, 'Please rate George on the following scale,' and was followed by a scale that ranged from extremely moral, to extremely immoral on another 7-point Likert-type scale. This measure was followed by a similar item but referred to George's behavior, and was rated on a scale pertaining to morality as well. The sixth item asked, 'How extreme is George's situation?' This was followed by a 7-point scale that ranged from very extreme to not extreme. The final measure read, 'Please rate George's behavior on the following scale,' and was followed by a 7-point scale ranging from extremely honest to extremely dishonest.
Results

Planned comparisons were used to test for significant differences between conditions. The means for each of the dependent variables are presented in Table 3, and the F values and significance levels are presented in Table 4. These analyses can be summarized as follows. For the two dependent variables of main interest, trait ratings and generalizations, there was no significant difference between the actor performing a dishonest behaviour to save his own life and performing a dishonest behaviour in the control condition. In addition, the target person who had performed a dishonest behaviour to save another person’s life was rated as much more honest and as much more likely to be honest in another situation than was the target person in either of the other two conditions.

Table 3. Mean ratings for generalization (Gen), trait attribution (Att), Affect (Aff) and morality (Mor), morality of behaviour (Mor Beh), situation extremity (Sit Ext), behaviour rating (Beh Rat)

<table>
<thead>
<tr>
<th>Trait exhibited by actor</th>
<th>Gen</th>
<th>Att</th>
<th>Aff</th>
<th>Mor</th>
<th>Mor Beh</th>
<th>Sit Ext</th>
<th>Beh Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reason</td>
<td>-0.57</td>
<td>0.33</td>
<td>0.33</td>
<td>0.17</td>
<td>-0.5</td>
<td>-0.63</td>
<td>-0.47</td>
</tr>
<tr>
<td>To save his own life</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.22</td>
<td>0.00</td>
<td>-0.40</td>
<td>1.53</td>
<td>-0.44</td>
</tr>
<tr>
<td>To save someone else’s life</td>
<td>0.71</td>
<td>0.88</td>
<td>0.76</td>
<td>1.32</td>
<td>1.03</td>
<td>1.58</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 4. Planned comparison F values for the multivariate and univariate contrasts

<table>
<thead>
<tr>
<th></th>
<th>Multivariate F experiment 3</th>
<th>Univariate F experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gen & Att</td>
<td>Gen</td>
</tr>
<tr>
<td>Own life vs. No reason</td>
<td>2.30</td>
<td>4.59</td>
</tr>
<tr>
<td>Own life vs. Other life</td>
<td>4.34</td>
<td>5.11</td>
</tr>
<tr>
<td>Other life vs. No reason</td>
<td>11.79</td>
<td>19.31</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note. The degrees of freedom for all multivariate and univariate contrasts are 1 and 93 for Experiment 3. Gen = generalization, Att = trait attribution, Aff = affect towards behaviour, Mor = actor’s morality, Mor. Beh. = morality of behaviour, Sit. Ext. = extremity of situation, Beh. Rat. = rating of behaviour. The top value corresponds to F value and lower value corresponds to the significance level.

The pattern was similar, and the difference between the control condition and the saving one’s own life condition was even smaller for the remaining dependent variables. In fact, for morality ratings, the target person who saved his own life was actually rated as slightly (not significantly) less moral than the control target. The one exception concerned ratings of the extremity of the situation. Both life-saving conditions were rated as being approximately similar in extremity, and as being much more extreme than the control condition. The lack of a difference between the two life-saving conditions indicates that the strong differences that were obtained on the other dependent variables are not due to situation extremity. Rather, it is the perceived morality of the act that seems to be important.
Discussion

As predicted, the results of these experiments demonstrate that negative hierarchically restrictive behaviours are not always expected to generalize across situations, and that participants do consider situational information. However, it takes a highly atypical situation to inoculate dishonest (or disloyal) actors from negative trait attributions and generalizations. We had originally believed that if the situation was sufficiently extreme, such as involving a huge sum of money or a life, such extremity would be sufficient to eliminate the tendency for people to make negative trait attributions and generalizations. In fact, the findings from all three experiments demonstrate that this hypothesis is wrong. The crucial issue is not the extremity of the situation, but rather the perceived morality of the act. When an actor performs a dishonest behaviour to save someone else’s life, the behaviour is perceived as being moral, the actor is considered to be an honest person, and as being likely to be honest in other situations. An even more intriguing finding is that the dishonest behaviour is considered honest and moral when the actor engages in the behaviour in order to save someone else’s life. The very same behaviour was rated as dishonest and immoral when it occurred in order for the actor to save his own life or for no reason. This finding indicates that participants are unable (in some situations) to separate the morality and honesty dimensions.

We suggested earlier the possibility that the reason for the lack of differences in the two life-saving conditions in Experiments 1 and 2 is that the wording was ambiguous. In Experiment 3, where the wording was made clearer, impressive differences were obtained on most of the dependent variables. One possible explanation for the Experiment 3 findings is that dishonest behaviour, in general, causes a great deal of negative affect (see Table 3). Even the potential mitigating circumstance of performing a dishonest behaviour in a situation where anyone would do so (i.e., to save one’s own life) may not be sufficient to eliminate a significant amount of the negative affect. In contrast, perhaps saving someone else’s life induces a great deal of positive affect that compensates for the negative affect that results from performing a dishonest behaviour.

To consider the larger attributional picture, combining the present findings with previous work indicates the following principles. First, the distinction between partially and hierarchically restrictive behaviours has been supported by a wide variety of findings. Negative behaviours pertaining to hierarchically restrictive trait dimensions (e.g., dishonest or disloyal behaviours) lead to stronger and more negative trait attributions (Reeder & Brewer, 1979; Trajmov & Schneider, 1994), they lead to stronger trait generalizations (Trajmov, 2001), and arouse more negative affect (Trajmov, Bromgard, Finlay, & Ketelaar, in press) than do negative behaviours pertaining to partially restrictive trait dimensions (e.g., unfriendly behaviours). Secondly, as far as trait generalizations are concerned, although people tend not to generalize from observing the performance of negative behaviours pertaining to partially restrictive trait dimensions (Trajmov, 1998), they do generalize if the negative behaviours pertain to hierarchically restrictive trait dimensions (Trajmov, 2001). The present findings show that even this picture is too simple. That is, if negative behaviours pertaining to hierarchically restrictive trait dimensions are construed as being moral, then the person who performs them will be similarly considered to be moral, and will be expected to perform morally in other situations. Thus, in this special case, the morality of the behaviour is expected to carry over to other situations, but its dishonesty is not.

The last point suggests an important puzzle for future theorizing about the expectations people form about the behaviours that actors are likely to perform in other
situations. Specifically, behaviours can have more than one characteristic (e.g. moral and dishonest), and there is little in the way using the current theorizing to predict which characteristics will be expected to generalize in which situations. To propose and test such a theory would be a worthy challenge for future attribution researchers.

References

Received 13 November 2001; revised version received 6 October 2003